Congruence-semimodular and congruence-distributive pseudocomplemented semilattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruence lattices of pseudocomplemented semilattices

Congruence lattices of algebras in various varieties have been studied extensively in the literature. For example, congruence lattices (i.e. lattices of ideals) of Boolean algebras were characterized by Nachbin [18] (see also Gratzer [9] and Jonsson [16]) while congruence lattices of semilattices were investigated by Papert [19], Dean and Oehmke [4] and others. In this paper we initiate the inv...

متن کامل

Congruence Lattices of Semilattices

The main result of this paper is that the class of congruence lattices of semilattices satisfies no nontrivial lattice identities. It is also shown that the class of subalgebra lattices of semilattices satisfies no nontrivial lattice identities. As a consequence it is shown that if 5^* is a semigroup variety all of whose congruence lattices satisfy some fixed nontrivial lattice identity, then a...

متن کامل

Distributive Congruence Lattices of Congruence-permutable Algebras

We prove that every distributive algebraic lattice with at most א1 compact elements is isomorphic to the normal subgroup lattice of some group and to the submodule lattice of some right module. The א1 bound is optimal, as we find a distributive algebraic lattice D with א2 compact elements that is not isomorphic to the congruence lattice of any algebra with almost permutable congruences (hence n...

متن کامل

The Structure of Pseudocomplemented Distributive Lattices. Ii: Congruence Extension and Amalgamation

This paper continues the examination of the structure of pseudocomplemented distributive lattices. First, the Congruence Extension Property is proved. This is then applied to examine properties of the equational classes ¿Sn, — lá«So), which is a complete list of all the equational classes of pseudocomplemented distributive lattices (see Part I). The standard semigroups (i.e., the semigroup gene...

متن کامل

Congruence Lattices of Finite Semimodular Lattices

We prove that every finite distributive lattice can be represented as the congruence lattice of a finite (planar) semimodular lattice.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebra Universalis

سال: 1982

ISSN: 0002-5240,1420-8911

DOI: 10.1007/bf02483909